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Abstract

We present an extension of the remeshed smooth particle hydrodynamics (RSPH) method for the simulation of

chemically reactive flows. The governing conservation equations are solved in a Lagrangian fashion, while particle

locations, which are distorted by the flow, are periodically re-initialized (remeshed) on a grid. The RSPH implemen-

tation is employed for the simulation of a hydrogen/air opposed-jet burner with detailed chemistry and transport. The

effect of particle number (resolution), compressibility (Mach number) and outflow boundary condition (length of the

domain) on the solution are considered. The RSPH computational results are compared with numerical results ob-

tained by a spectral element implicit scheme and by a one-dimensional code. It is shown that RSPH provides a flexible

and accurate alternative for the numerical simulation of chemically reacting flows.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Grid-based approaches (e.g., finite element, finite difference, finite volume and spectral methods) are

used extensively for the simulation of reacting flows [1]. Lagrangian methods have a marked advantage in
convection-dominated flows, where the major contribution of the non-linear convection term can be

computed exactly. Unfortunately, they are confronted with a number of problems, ranging from the dif-

ficulty in extending the method to multidimensional flows [2], to difficulties in including heat release [3–5],

an essential feature of most reacting flows. Substantial efforts have been made to extend Lagrangian

particle methods for the simulation of reacting flows. From the purely mathematical point of view, the
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Lagrangian representation of the transport equations that describe a chemically reacting flow is not

complicated. However, the development of an appropriate solution procedure capable of solving these

transport equations within the Lagrangian frame is not a simple task.

Vortex methods have been successfully applied in the simulation of incompressible flows. When ex-

tending vortex methods to reacting flows, there are two general ways [6] by which the effect of chemistry can

be taken into account: interface methods, and direct Lagrangian methods. In interface methods, chemical

reactions are assumed to occur within a narrow zone. These approaches are best suited for simulating

unsteady premixed flames. The chemical reaction effect is included by adding a thermal expansion and
baroclinic torque term in the continuity and vorticity transport equations, respectively [3,4]. Direct La-

grangian methods were developed as an extension of the transport element method [7,8] to the simulation of

unsteady reacting flows. No assumptions are made with respect to the structure and topology of the re-

action zone, however; these models are not considered ready to study 3-D reacting flows (compared to

conventional combustion modeling techniques) [6]. The method has been applied successfully in funda-

mental aspects of reacting flows (e.g., reacting mixing layer simulations), mainly with a single-step reaction

of finite or infinite rate. Direct Lagrangian methods can be extended to systems with more species, but are

restricted to equal diffusivities of the species [9]. The coupling errors that are caused by the combination of
convection and other physical processes in reacting vortex methods are not well understood, and may lead

to incorrect solutions [10]. The direct Lagrangian methods are regarded more often as a large eddy sim-

ulation techniques [6] using modeling mechanisms to account for small-scale transport [3,4,7–9,11,12].

Another particle method that has been successfully applied in the simulation of systems with reactions is

the particle-in-cell (PIC) method [13]. Convective transport is solved using particles, while other processes

are solved on a grid. However, PIC with reaction is computationally expensive compared to same order

grid-based methods [14].

To the best of our knowledge, the Smooth Particle Hydrodynamics (SPH) method has not been applied
to the simulation of reacting flows. In this paper, the remeshed SPH implementation (RSPH) presented in

[15] is extended for the simulation of chemically reacting flows. All the transport equations and terms are

solved in a Lagrangian fashion simultaneously (without linearization or background grid-based differen-

tiation). The resulting algorithm retains all the computational features of particle methods: adaptivity,

robustness, no convection-related stability limitations, and, because of the local character of particle in-

teractions, it can be efficiently parallelized in a straightforward way. In addition, it can be easily extended to

include multi-phase effects.

The present paper is organized as follows: in Section 2, we outline the governing equations and present
their particle discretization. In Section 3, the method is applied to the simulation of a two-dimensional

hydrogen/air opposed-jet burner with detailed chemistry and transport. The effects of resolution (number of

particles), compressibility (Mach number), and outflow boundary condition (length of the domain) on the

solution are also discussed in the same section.
2. Governing equations and RSPH methodology

2.1. Governing equations

The motion of a viscous, heat conducting, reacting, and compressible medium is described by the

continuity, momentum, energy, and species concentration equations. For a multi-component, calorically

perfect gas the conservation equations are [16]:

Dq
Dt

¼ �q
oui
ox

; ð1Þ

i
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q
Dui
Dt

¼ � op
oxi

þ osij
oxj

; ð2Þ
qcv
DT
Dt

¼ �p
oui
oxi

þ sij
oui
oxj

þ _QQ� oqi
oxi

; ð3Þ
DqYs
Dt

¼ �qYs
oui
oxi

� oqYsVsi
oxi

þ _RRs; ð4Þ

where xi, ui are the components of the position and the velocity vector, respectively, q the density, p the
pressure, T the temperature, l the viscosity, k the thermal conductivity, cv the mean specific heat at constant

volume, _QQ the heat release rate, s the species index, cps the specific heat at constant pressure of species s, Ys
the mass fraction of species s, _RRs the mass rate of production of species s, and Vsi the diffusion velocity of

species s. In these equations, D=Dt is the material derivative:

D

Dt
¼ o

ot
þ ui

o

oxi
; ð5Þ

and Einstein�s index notation is used for vectors and tensors. Viscous stresses, sij, and the heat flux vector

are:

sij ¼ l
oui
oxj

�
þ ouj

oxi
� 2

3
dij

ouk
oxk

�
; ð6Þ
qi ¼ �k
oT
oxi

þ q
XSpecies
s¼1

cpsTYsVsi : ð7Þ

The heat flux vector qi (in Eq. (7)) contains the heat conduction and thermal diffusion (Soret) effect. The

influence of species diffusion on thermal transport (Dufour effect) is of minor importance in combustion

simulations and will be neglected [17]. Radiation through a fluid containing combustion products depends

on the temperature and composition throughout the entire field. Except in sooting flames, radiation is

usually a small fraction of the total heat flow and is neglected in combustion simulations of ‘‘thin’’ flames,

in order to avoid the complexities associated with its description. Neglecting the thermal diffusion velocity

(which is significant only for low molecular weight species), the diffusion velocities, V C
si
, can be written in the

classical Fickian form [16]:

V C
si

¼ � 1

Xs
Ds

oXs

oxi
; ð8Þ

where Xs the mole fraction, and Ds the mixture-average diffusion coefficient of species s. Mixture-average

diffusion coefficients are approximations [18], and do not guarantee that the net species diffusion flux is zero

(i.e.,
PSpecies

s¼1 YsV s ¼ 0), and, therefore, conservation of mass (i.e.,
PSpecies

s¼1 Ys 6¼ 1). One approach to correct

this [19] is to add a correction factor, Vc, so that V s ¼ VC
s þ Vc. Vc is independent of species, but spatially

varying, and is defined as:

Vc ¼ �
XSpecies
s¼1

YsV
C
s : ð9Þ

All thermodynamic and transport properties depend on temperature and mixture composition [18,20].
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The system of differential Eqs. (1)–(4) is closed with the equation of state for an ideal gas

p ¼ qRT ; ð10Þ
where R is the gas constant.

The non-dimensional variables are obtained from the dimensional variables as follows:

x�i ¼
xi
L0

; q� ¼ q
q0

; t� ¼ t
L0=U0

; u�i ¼
ui
U0

; T � ¼ T
T0

;

p� ¼ p
q0RT0

; l� ¼ l
l0

; k� ¼ k
k0
; c�v ¼

cv
cv0

; c�ps ¼
cps
cv0c

; ð11Þ
_QQ� ¼
_QQ

q0cv0T0U0=L0

; D�
s ¼

Ds

D0

; _RR� ¼
_RRs

q0U0=L0

;

where the superscript � and the subscript 0 indicate the non-dimensional and reference quantities, respec-

tively. The quantities L0; q0;U0; T0; l0; k0;D0 and cv0 denote the characteristic length, density, velocity,

temperature, viscosity, thermal conductivity, diffusion coefficient, and specific heat at constant volume,
respectively. In non-dimensional form, the system of governing equations (neglecting the Soret effect for

comparison purposes in Eq. (7)) can be written:

Dq�

Dt�
¼ �q� ou

�
i

ox�i
; ð12Þ
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os�ij
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dij
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!
: ð17Þ

The dimensionless numbers that appear in the equations are the Reynolds number, Re, the Mach

number, M , the Prandtl number, Pr, and the Peclet number, Pe:

Re ¼ q0U0L0

l0

; M2 ¼ U 2
0

cRT0
; Pr ¼ l0ccv0

k0
; Pe ¼ U0L0

D0

; ð18Þ

where c is the ratio of the specific heat capacities.

The set of equations presented above includes acoustic interactions and compressibility effects, as well

as heating due to viscous dissipation. Body forces (e.g., gravitational) and thermal radiation effects are

neglected.
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2.2. Numerical method

The numerical method used in the present study is based on the Lagrangian formulation of the gov-

erning equations. The flow quantities are discretized into particles using the Smooth Particle Hydrody-

namics technique [21–23]. Each particle a is associated with a mass ma, density qa, velocity ðuiÞa, viscosity
la, pressure pa, temperature Ta, thermal conductivity ka, mass fraction ðYsÞa, heat release rate _QQa, reaction

rate ( _RRsÞa, and position ðxiÞa and all the necessary thermodynamic quantities involved in Eqs. (1)–(10). The

particles move in a Lagrangian fashion according to the formula:

dxi
dt

¼ ui: ð19Þ

All the quantities are interpolated on the particle locations and all the flow quantities can be reconstructed

by a linear superposition of the flow quantities carried by the particles as weighed by a smooth interpolation

kernel.

The gradient operator of a scalar quantity A for the particle a can be written [15]:

rAh ia ¼
X
b

Vb Abð � AaÞrW rað � rb; hÞ ð20Þ

and the second-order derivative for the location of the a particle can be written [15]:

o2A
oxixj

� �
a

¼
X
b

Vb Abð � AaÞ �
o2

oxixj
W rað � rb; hÞ; ð21Þ

where h�ia denotes a quantity associated with particle a, where Ai, Vi ði ¼ a; bÞ are the values of the scalar
and the volume of particle i, W is the interpolation kernel, and h is a scaling variable with dimension of

length.

The choice of the interpolation kernel is the core of the method. Most SPH simulations use splines

(cubic, quartic and quintic) [23–25]. In our implementation the quartic spline is used [26]. It is constructed

from three B-splines requiring kernel and its first, second and third derivative to be continuous. To

maintain the particle resolution (which can be distorted by the flow), and ensure to accurate evaluation of

second derivatives, particles are periodically re-initialized (remeshed) on a uniform grid by high-order,

moment-conserving schemes [27,28]. Remeshing introduces numerical diffusion, but on the other hand
eliminates problems associated with particle distortion. It must be noted that the added dissipation induced

by remeshing is proportional to the gradients of the flow which would have been introduced by particle

distortion if remeshing was not applied. With remeshing, gradients of the field variables remain small. A

detailed description of the algorithm can be found in [15].

The resulting discretized equations are (more details in [15,21,22]):

Dqa

Dt
¼ �qa

X
b

Vb ~uub
�

�~uua
�
� raW rað � rb; hÞ; ð22Þ
q
Du
Dt
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ox

� �
a

þ 4

3

o

ox
l
ou
ox

� �
a

� 2

3

o

ox
l
ov
oy

� �
a

þ o

oy
l
ou
oy

� �
a

þ o

oy
l
ov
ox

� �
a

; ð23Þ
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To take into account the variable viscosity, l, in an efficient way, the viscous terms are discretized as:

o

oxi
l
ouk
oxj

� �
a

¼ ol
oxi

� �
a

ouk
oxj

� �
a

þ l
o2uk
oxixj

� �
a

¼
X
b

Vb lbð
 

� laÞ
o

oxi
W rað � rb; hÞ

! X
b
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� uk;aÞ
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!

þ la

X
b

Vb uk;bð � uk;aÞ
o2

oxixj
W rað � rb;hÞ: ð25Þ

The two-dimensional version of the energy Eq. (3) reads

qcv
DT
Dt

� �
a

¼ � p
ou
ox

��
þ ov
oy

��
a

þ 2

3
l

ou
ox

�"*
� ov
oy
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�"*
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#+

a

þ _QQ
D E
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þ o

ox
k
oT
ox

� �
a

þ o
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k
oT
oy

� �
a

: ð26Þ

The compressibility and viscous dissipation term in the energy equation can be easily discretized by using

the general formula of Eq. (20).

The derivation of the SPH formulation for the heat diffusion term, allowing for a temperature dependent

thermal conductivity, is similar to that of the viscous terms of the momentum equation described above.

The final result reads

o

oxi
k
oT
oxi

� �� �
a

¼ ok
oxi

� �
a

oT
oxi

� �
a

þ k
o2T
ox2i

� �
a

¼
X
b

Vb kbð
 

� kaÞ
o

oxi
W rað � rb; hÞ

! X
b

Vb Tbð
 

� TaÞ
o

oxi
W rað � rb; hÞ

!

þ ka
X
b

Vb Tbð � TaÞ
o2

ox2i
W rað � rb; hÞ: ð27Þ

Finally, the conservation equation of species is written as:

DqYs
Dt

� �
a

¼ � qYs
ou
ox

��
þ ov
oy

��
a

þ o

ox
qYs

Ds

Xs

oXs

ox

� �� �
a

þ o

oy
qYs

Ds

Xs

oXs

oy

� �� �
a

�
XSpecies
ss¼1

o

ox
qYs

Dss

Xss

oXss

ox

� �� �* +
a

�
XSpecies
ss¼1

o

oy
qYs

Dss

Xss

oXss

oy

� �� �* +
a

þ _RRs

D E
a
: ð28Þ

Using the general formula of Eq. (20), the first term of the species equation can be easily discretized. The

species diffusion terms in (28) that correspond to the diffusion velocity, Eq. (8), and to the correction

velocity, Eq. (9), reads:

o

oxi
qYs

Ds

Xs|fflffl{zfflffl}
As

oXs

oxi

0
BB@

1
CCA

* +
a

¼ o

oxi
As

� �
a

oXs

oxi

� �
a

þ As
o2Xs

ox2i

� �
a

; ð29Þ
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XSpecies
ss¼1

o

oxi
qYs

Dss

Xss|fflfflffl{zfflfflffl}
Bss

oXss

oxi

0
BB@

1
CCA

* +
a

¼
XSpecies
ss¼1

o

oxi
Bss

� �
a

oXs

oxi

� �
a

�
þ Bss

o2Xs

ox2i

� �
a

�
; ð30Þ

which can also be expressed in a way similar to Eq. (27). Note that in order to avoid the nested sum-

mation and the associated increase in computational cost, the correction velocity is written in vector

form.

The diffusion operators (in momentum, energy and species concentrations equations) are written in

a general discretized form for variable diffusion coefficients using direct second differentiation of the ker-

nel. The derived formulas are not symmetric and they do not conserve the linear and angular mo-

ments algebraically. For constant diffusion coefficients the operators become symmetric and consequently

conservative.
3. Results and discussion

The RSPH technique was used for the simulation of a two-dimensional laminar, planar, hydrogen-air

opposed-jet burner (Fig. 1). A schematic representation of the geometry used is shown in Fig. 1. For the

numerical simulations, only half of the domain is considered. The inflow conditions for both jets are:

v ¼ 0; u ¼ umax 1

�
� y2

B2=4

�
; Tinlet ¼ 300K; ð31Þ

where B is the slot width.

The oxidizer is air (with mole fractions XO2
¼ 0:21, XN2

¼ 0:79) and the fuel is diluted hydrogen

(XH2
¼ 0:40, XN2

¼ 0:60). The Reynolds number is defined as

Re ¼ umaxqoxidizerB
loxidizer

: ð32Þ

The jet width, B, is equal to 0.54 cm. The upper and lower walls are considered isothermal and non-

reactive (no-slip, no penetration, T ¼ 300K), the outflow conditions are of zero gradient type

(du=dx ¼ dv=dx ¼ dYs=dx ¼ dT=dx ¼ 0), and ambient pressure, while the axis of symmetry is a zero-

gradient boundary (u ¼ dv=dx ¼ dT=dx ¼ dq=dx ¼ dYs=dx ¼ 0). Unless otherwise noted, the ratio of jet

separation distance to jet diameter will be H=B ¼ 1, and the domain length will be L ¼ 3B.
The numerical simulation of compressible flow requires accurate control of wave reflections from the

computational domain. For accurate predictions, it is necessary to eliminate the acoustic waves by a

mechanism similar to non-reflecting or absorbing boundary conditions [29] (subsonic inflow, subsonic

reacting outflow, adiabatic slip wall). All thermodynamic and transport properties depend on temperature

and mixture composition [18,20]. The system of discretized equations are integrated fully implicitly with the

ordinary differential equation integrator VODEPK [30].

For the example conditions considered here, Re ¼ 508:76 (laminar jets), and Pr ¼ 0:714. The actual value
of the Mach number is 0.008, corresponding to a practically incompressible flow. In the simulations, in

order to avoid the time-step restriction due to acoustic wave propagation, the Mach number is set to 0.05.
In our formulation the system of differentials equations becomes stiff when Mach number becomes very

small; acoustic waves need to be resolved accurately leading to very small time steps. The detailed chemical

mechanism of Yetter et al. [31] involving nine species (O2, H2, H, O, OH, H2O, HO2, H2O2 and N2) and 21

reversible reactions is employed.



Fig. 2. Isolines of velocities, temperature and representative species mass fractions, from RSPH simulation using 97,200 particles.

Sixteen equidistant isolines for each variable covering the range of values shown in parentheses are plotted.

Fig. 1. Geometry of two-dimensional planar opposed-jet diffusion burner.
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Fig. 3. Temperature profiles along the axis of symmetry obtained with RSPH: (—) 97,200 particles, (- - -) 44,000 particles, (-�-�-)
174,000 particles.

Fig. 4. Axial velocity profiles (non-dimensional) along the axis of symmetry. obtained with RSPH: (—) 97,200 particles, (- - -) 44,000

particles, (-�-�-) 174,000 particles.
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For all computed cases, we first obtained the ‘‘cold’’ flow solution, which represents the mixing problem

between the fuel and oxidizer jet. The whole ignition process was then simulated by introducing a hot spot

around the stagnation plane along the plane of symmetry. The computations then proceeded until all

transients died out and the steady state was reached.
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Fig. 2 shows the steady-state isocontours of the velocity components, temperature, and representative

species, using 97,200 particles (corresponding to 180� 540 grid). In order to study the dependence of the

solution on the number of particles, simulations using a coarser particle resolution (44,000 particles, cor-

responding to a 120� 360 grid) and a finer particle resolution (174,000 particles, corresponding to a

240� 720 grid) were performed. The results of the comparison are shown in Figs. 3–5. The temperature

profile along the axis (Fig. 3) shows very good agreement among the three simulations; the difference of the

maximum temperature is less than 1%. The flame location and thickness are also in very good agreement. In

Fig. 4 the axial velocity plot along the axis of symmetry is shown: the axial velocity profile, as well as the
location of the stagnation point is almost identical in all three simulations. Similar behavior can be ob-

served in the species distribution along the symmetry axis in Fig. 5.

As mentioned above, the Mach number was set arbitrarily to 0.05 to avoid a prohibitively restrictive

time step. In order to study the effect of Mach number on the solution, we performed simulations for two
Fig. 5. Mass fraction profiles of H2, O2, H2O and OH along the axis of symmetry obtained with RSPH: (—) 97,200 particles, (- - -)

44,000 particles, (-�-�-) 174,000 particles.



Fig. 6. Temperature profiles along the axis of symmetry for different Mach numbers obtained with RSPH: (—) 97,200 particles with

Ma ¼ 0:05, (- - -) 97,200 particles with Ma ¼ 0:1, (-�-�-) 97,200 particles with Ma ¼ 0:025.

Fig. 7. Axial velocity profiles (non-dimensional) along the axis of symmetry for different Mach numbers obtained with RSPH: (—)

97,200 particles with Ma ¼ 0:05, (- - -) 97,200 particles with Ma ¼ 0:1, (-�-�-) 97,200 particles with Ma ¼ 0:025.
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additional values of Ma: one with higher (Ma ¼ 0:1) and one with lower (Ma ¼ 0:025). As can be seen in

Figs. 6–8, for the range considered here, the value of Ma has negligible effect on the solution. The difference

in temperature and velocity is less than 1.5%.



Fig. 8. Mass fraction profiles of H2, O2, H2O and OH along the axis of symmetry for different Mach numbers obtained with RSPH:

(—) 97,200 particles with Ma ¼ 0:05, (- - -) 97,200 particles with Ma ¼ 0:1, (-�-�-) 97,200 particles with Ma ¼ 0:025.
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Finally, we investigated the effect of the outflow boundary condition on the solution, by increasing the

length of the computation domain to L=B ¼ 4, while keeping all other parameters (e.g., particle resolution,

Mach number) constant. The corresponding results of temperature, velocity and species mass fraction (not
shown here for brevity) show very little difference between the two simulations.

The RSPH results are validated with numerical results obtained using a two-dimensional code [32] and

the one-dimensional code OPPDIF [20]. The two-dimensional code is based on spectral element spatial

discretization, and solves the low Mach form of the time dependent conservation equations of mass,

momentum, energy and species. The integration is based on a high-order stiffly stable splitting scheme that

couples the ‘‘hydrodynamic’’ (continuity and momentum) with the ‘‘thermo-chemistry’’ (species and en-

ergy) subsystems [32]. Detailed description of the numerical formulation and some applications can be

found in [32–34]. OPPDIF is a one-dimensional model based on a similarity solution, with the introduction
of a stream function [20]. All transport properties are computed the same way in all codes and the same

kinetic scheme is employed.



Fig. 9. Temperature profiles along the axis of symmetry. (—) RSPH simulation using 97,200 particles, (s) 2-D spectral element code

simulation, (- - -) OPPDIF simulation.

Fig. 10. Axial velocity profiles (non-dimensional) along the axis of symmetry. (—) RSPH simulation using 97,200 particles, (s) 2-D

spectral element code simulation, (- - -) OPPDIF simulation.

A.K. Chaniotis et al. / Journal of Computational Physics 191 (2003) 1–17 13
A comparison of the RSPH results for the temperature along the axis of symmetry with the 2-D and the

1-D simulation results is presented in Fig. 9, showing very good agreement with the spectral-element code.

The RSPH simulation is performed with 97,200 particles, and the spectral element simulation employs 176
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elements with 12th order polynomials in each spatial direction. The flame location and flame thickness are

identical. The one-dimensional results obtained from OPPDIF yield the same flame location, but smaller

flame thickness and lower maximum temperature, by about 40 K (2.7%). As discussed in [33], this difference

between the one- and two-dimensional simulations is due to two-dimensional effects.

The axial velocity profiles and the species profiles along the axis of symmetry are shown in Figs. 10 and

11, respectively. The agreement between the RSPH and the 2-D spectral element code is again very good,

the difference for temperature, axial velocity and species being less than 1%. Very good agreement was

observed not only along the axis of symmetry, but also in the remainder of the computational domain. This
statement is exemplified and underpinned in Fig. 12 which shows the temperature, u-, v-velocities and

characteristic species concentration profiles at distance y ¼ B away from the axis of symmetry, obtained

with the RSPH and the spectral element code.
Fig. 11. Mass fraction profiles of H2, O2, H2O and OH along the axis of symmetry. (—) RSPH simulation using 97,200 particles, (s)

2-D spectral element code simulation, (- - -) OPPDIF simulation.



Fig. 12. Temperature, u and v velocity (non-dimensional) and mass fraction profiles at distance y ¼ 1:0B from the axis of symmetry.

(—) RSPH simulation using 97,200 particles, (s) 2-D spectral element code simulation.
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4. Conclusions

The RSPH methodology is extended to the simulation of chemically reacting flows and applied to the

numerical modeling of a laminar, planar, opposed-jet burner. A detailed hydrogen-oxygen mechanism is

used, involving nine species and 21 elementary reactions.

An extensive parametric study for the RSPH method is presented. In this study, the effect of particle

resolution, Mach number, and length of the computational domain are investigated. In addition, the RSPH

results are validated against the results obtained by a spectral element code. The excellent agreement in-

dicates that RSPH is an accurate method for the simulation of reacting systems using detailed chemistry
and transport. It should be pointed out, that there are no topological or geometrical assumptions in the

RSPH scheme that can limit the applicability of the method in three dimensions. In addition, RSPH is
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easily parallelizable (due to its nature as a particle method) and this is an inherent advantage of the

technique compared to other methods. The results presented here were obtained with a code parallelized

with a shared memory technique (OpenMP [35]). More sophisticated algorithms for distributed memory

systems based on message-passing interface (MPI) can be used in SPH and RSPH. The best candidates for

such parallelization are algorithms from molecular dynamics techniques (e.g. [36]).

Although not considered here, RSPH can be used to study flame-acoustic waves interaction [37] in

compressible reacting flows, at least in the subsonic regime. One of the disadvantages of RSPH is the

smearing of shock regions in highly compressible regions. Strong gradients (i.e., shocks and discontinuities)
cannot be properly handled by the high order, moment conserving remeshing kernels we are currently

using. Work is underway to circumvent this limitation by adopting special remeshing procedures that

would accommodate relevant shock-capturing schemes while maintaining high order accuracy.
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